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Abstract
It has been demonstrated, using variational methods, that quantum vacuum
energy gravitates according to the equivalence principle, at least for the finite
Casimir energies associated with perfectly conducting parallel plates. This
conclusion holds independently of the orientation of the plates. We review these
arguments and add further support to this conclusion by considering parallel
semitransparent plates, that is, δ-function potentials, acting on a massless
scalar field, in a spacetime defined by Rindler coordinates. We calculate the
force on systems consisting of one or two such plates undergoing acceleration
perpendicular to the plates. In the limit of small acceleration we recover
(via the equivalence principle) the situation of weak gravity, and find that
the gravitational force on the system is just Mg, where g is the gravitational
acceleration and M is the total mass of the system, consisting of the mass of the
plates renormalized by the Casimir energy of each plate separately, plus
the energy of the Casimir interaction between the plates. This reproduces
the previous result in the limit as the coupling to the δ-function potential
approaches infinity. Extension of this latter work to arbitrary orientation of
the plates, and to general compact quantum vacuum energy configurations, is
under development.

PACS numbers: 03.70.+k, 04.20.Cv, 04.25.Nx, 03.30.+p

1. Introduction

The subject of quantum vacuum energy (the Casimir effect) dates from the same year as the
discovery of renormalized quantum electrodynamics, 1948, and suggests that the assertion that
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zero-point energy is not observable is invalid. (For a contrary viewpoint, see [1].) On the other
hand, because of the severe divergence structure of the theory, controversy has surrounded
it from the beginning. Sharp boundaries give rise to divergences in the local energy density
near the surface, which may make it impossible to extract meaningful self-energies of single
objects, such as the perfectly conducting sphere considered by Boyer [2]. These objections
have recently been most forcefully presented by Graham et al [3] and Barton [4], but they date
back to Deutsch and Candelas [5, 6]. In fact, it now appears that these surface divergences
can be dealt with successfully in a process of renormalization, and that finite self-energies in
the sense of Boyer may be extracted [7, 8].

But the most troubling aspect of local energy divergences is in the coupling to gravity.
The source of gravity is the local energy–momentum tensor, and such surface divergences
promise serious difficulties. As a prolegomenon to studying such questions, we here address
in section 2 a simpler question: how does the completely finite Casimir energy of a pair of
parallel conducting plates respond to gravity? (We will address divergences in section 3.) The
question, and its answer, turn out to be surprisingly less straightforward than the reader might
suspect! (For a complementary view on the gravitational effects of Casimir energy, see the
contribution to these proceedings by S A Fulling et al.)

2. Variational method

2.1. Casimir stress tensor for parallel plates

Brown and Maclay [9] showed that, for parallel perfectly conducting plates separated by a
distance a in the z-direction, the electromagnetic stress tensor acquires the vacuum expectation
value between the plates,

〈T µν〉 = Ec

a
diag(1,−1,−1, 3), Ec = − π2

720a3
h̄c. (1)

Outside the plates the value of 〈T µν〉 = 0. Because there are some subtleties here, let us
review the argument for the case of a conformally coupled scalar (the electromagnetic case
differs by a factor of 2). Actually, the result between the plates, 0 < z < a is given in great
detail in [10] (γ is the conformal parameter):

〈T µν〉 = (u0 + u)diag(1,−1,−1, 3) + (1 − 6γ )g(z)diag(1,−1,−1, 0), (2)

where

u0 = − 1

12π2

∫ ∞

0
dκ κ3, u = − π2

1440a4
. (3)

Note that u0 is a divergent constant, independent of a, and is present (as we shall see) both
inside and outside the plates; so it does not contribute to any observable force or energy (the
force on the plates is given by the discontinuity of 〈Tzz〉), and so may be simply disregarded (as
long as we are not concerned with dark energy). But see below! Similarly, the term involving
the Hurwitz zeta function,

g(z) = − 1

16π2a4
[ζ(4, z/a) + ζ(4, 1 − z/a)], (4)

which exhibits the universal surface divergence near the plates,

g(z) ∼ − 1

16π2z4
, z → 0+, (5)

is also unobservable (if we disregard gravity) because it does not contribute to the force on
the plates, nor does it contribute to the total energy, since the integral over g(z) between the
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plates is independent of the plate separation. Of course, the best way to eliminate that term is
to choose the conformal value γ = 1/6.

Since the exterior calculation does not appear to be referred to in [10], let us sketch the
calculation here: consider parallel Dirichlet plates at z = 0 and z = a. The reduced Green’s
function satisfies(

− d2

dz2
+ κ2

)
g(z, z′) = δ(z − z′), (6)

where κ2 = k2 − ω2 = k2 + ζ 2. The solution for z, z′ < 0 is

g(z, z′) = − 1

κ
eκz< sinh κz>. (7)

It is very straightforward to calculate the one-loop expectation value of the stress tensor from

i〈T µν〉 =
(

∂µ∂ ′ν − 1

2
gµν∂λ∂ ′

λ

)
G(x, x ′)

∣∣∣∣
x ′=x

− γ (∂µ∂ν − gµν∂2)G(x, x). (8)

After integrating over ω = iζ and k, we find the result (z < 0)

〈T µν〉 = u0 diag(1,−1,−1, 3) − (1 − 6γ )

16π2|z|4 diag(1,−1,−1, 0). (9)

This is exactly as expected. The u0 term is the same as inside the box, so is just the vacuum
value, and the second term is the universal surface divergence (independent of plate separation),
which can be eliminated by setting γ = 1/6.

Thus, we conclude that the physical stress tensor VEV is just that found by Brown and
Maclay,

〈T µν〉 = u diag(1,−1,−1, 3)θ(z)θ(a − z), (10)

in terms of the usual step function.

2.2. Variational principle

Now we address the question of the gravitational interaction of this Casimir apparatus [11]. It
seems this question can be most simply answered through use of the gravitational definition
of the energy–momentum tensor,

δWm ≡ −1

2

∫
(dx)

√−gδgµνTµν = 1

2

∫
(dx)

√−gδgµνT
µν. (11)

For a weak field, gµν = ηµν + 2hµν (Schwinger’s definition [12] of hµν). So if we think of
turning on the gravitational field as the perturbation, we can ignore

√−g. The gravitational
energy, for a static situation, is therefore given by

(
δW = − ∫

dtδE
)

Eg = −
∫

(dx)hµνT
µν. (12)

We can use the gravity-free electromagnetic Casimir stress tensor (10), with u now replaced
by Ec/a for the electromagnetic situation.

We now use the metric [13, 14]

g00 = −(1 + 2gz), gij = δij . (13)

This is appropriate for a constant gravitational field. (But see below.) Let us consider a Casimir
apparatus of parallel plates separated by a distance a, with transverse dimensions L 	 a. Let
the apparatus be oriented at an angle α with respect to the direction of gravity, as shown in
figure 1. Let us take the Cartesian coordinate system attached to the earth to be (x, y, z),

3
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y

z
ζ η

α

Figure 1. Relation between two Cartesian coordinate frames: one attached to the earth (x, y, z),
where −z is the direction of gravity, and one attached to the parallel-plate Casimir apparatus
(ζ, η, χ), where ζ is in the direction normal to the plates. The parallel plates are indicated by the
heavy lines parallel to the η axis. The x = χ axis is perpendicular to the page.

where, as noted above, z is the direction of −g. Let the Cartesian coordinates associated with
the Casimir apparatus be (ζ, η, χ), where ζ is normal to the plates, and η and χ are parallel to
the plates. The relation between the two sets of coordinates is

z = ζ cos α + η sin α, y = η cos α − ζ sin α, x = χ. (14)

Let the center of the apparatus be located at (ζ0, η = 0, χ = 0).
Now we calculate the gravitational energy

Eg =
∫

(dx)gzT 00 = Ec

a
gL

∫ L/2

−L/2
dη

∫ ζ0+a/2

ζ0−a/2
dζ(ζ cos α + η sin α)

= gEc

a
L2 cos αaζ0 + K, (15)

where K is a constant, independent of ζ0. Thus, the gravitational force per area on the apparatus
is independent of orientation,

F

A
= − ∂Eg

A∂z0
= − ε

2a
Ec = −gEc, z0 = ζ0 cos α, (16)

a small upward push. Here ε = 2ga is a measure of the gravitational force relative to the
Casimir force. Note that on the Earth’s surface, the dimensionless number ε is very small.
For a plate separation of 1 µm,

ε = 2ga

c2
= 2.2 × 10−22; (17)

so the considerations here would appear to be only of theoretical interest. The effect is far
smaller than the Casimir forces between the plates.

It is somewhat simpler to use the energy formula to calculate the force by considering the
variation in the gravitational energy directly, as we can illustrate by considering a mass point
at the origin:

T µν = mδ(r)δµ0δν0. (18)

If we displace the particle rigidly upward by an amount δz0, the change in the metric is
δh00 = −gδz0. This implies a change in the energy, exactly as expected:

δEg = −mc2(−gδz0) = mgδz0. (19)
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Now we repeat this calculation for the Casimir apparatus. The gravitational force per
area on the rigid apparatus is F

A
= − δEg

δz0
= −gEc, again the same result found in (16), which

agrees with the second result found by Calloni et al [13] but is 1/4 that found by Bimonte
et al [14], who reproduce the first result of [13]. Our result is consistent with the principle of
equivalence and with one result of Jaekel and Reynaud [15].

2.3. Alternative calculation

As in electrodynamics, we should be able to proceed, starting from the definition of the field

δW =
∫

(dx)δT µνhµν. (20)

Again, check this for the force on a mass point, with stress tensor given by (18), so

δEg = −
∫

(dr)m (−δr · ∇) δ(r)h00 = −mδr · ∇h00. (21)

Since h00 = −gz, we conclude − δE
δr = F = −mgẑ.

For the constant field the force on a Casimir apparatus is obtained from the change in the
energy density

T 00 = Ec

a
θ(a/2 − ζ + ζ0)θ(ζ − ζ0 + a/2), (22)

that is, recalling that z0 = ζ0 cos α,

δT 00 = Ec

a
δz0

1

cos α
[δ(ζ − ζ0 − a/2) − δ(ζ − ζ0 + a/2)] , (23)

which yields a result identical to (16) [h00 = −g(ζ cos α + η sin α)]

− δEg

Aδz0
= F

A
= Ec

a

1

cos α
h00

∣∣∣∣
ζ=ζ0+a/2

ζ=ζ0−a/2

= −gEc. (24)

2.4. Metric near the surface of the Earth

However, the above metric (13), while sufficing for massive Newtonian objects, might seem
inappropriate for photons. Rather, should we not use the perturbation of the Schwarzschild
metric, which, for weak fields (GM/r 
 1), is in isotropic coordinates [16]:

ds2 = −
(

1 − 2GM

r

)
c2dt2 +

(
1 +

2GM

r

)
dr2? (25)

If we expand this a short distance z above the Earth’s surface, of radius R, we find

g00 ≈ −
(

1 − 2GM

R
+ 2gz

)
, gij ≈ δij

(
1 +

2GM

R
− 2gz

)
. (26)

Now, for our Casimir apparatus shown in figure 1, each component of the Casimir stress
tensor contributes with equal weight,

− δEg

Aδz0
= −ga(T 00 + T 11 + T 22 + T 33) = −2gEc, (27)

since T = T λ
λ = 0, which is twice the previous result. Note that again the result is independent

of α. If, instead, we use the second method, we have

δT µν = −δz
Ec

a
(1,−1,−1, 3)

1

cos α

[
δ

(
ζ − ζ0 +

a

2

)
− δ

(
ζ − ζ0 − a

2

)]
; (28)
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so, again we get the same result:

−δEg

δz0
= −Ec

a

∫
(dr)
cos α

[
δ
(
ζ − ζ0 +

a

2

)
− δ

(
ζ − ζ0 − a

2

)]
(−2gz) = F = −A2gEc, (29)

where z = ζ cos α + η sin α.
We might think we would be able to obtain the same result using the original Schwarzschild

coordinates, where h00 = −gz, hρρ = −gz, and all other components of hµν are
zero. However, now if we use the first method above, the result is proportional to
T 00 + T ρρ = Ec

a
4 cos2 α, which implies F

A
= −4gEc cos2 α. This agrees with Bimonte et

al’s earlier result [14] for α = 0, but this is completely fortuitous, since they did not study
orientation dependence or use isotropic coordinates.

2.5. Gauge noninvariance

The reason we get different answers in different coordinate systems is that our starting point
is not gauge invariant. Under a coordinate redefinition, which for weak fields is a gauge
transformation of hµν [12], hµν → hµν +∂µξν +∂νξµ, where ξµ is a vector field, the interaction
W is invariant only if the stress tensor is conserved, ∂µT µν = 0. Otherwise, there is a change
in the action, �W = −2

∫
(dx)ξν∂µT µν.

Now in our case (where we make the finite size of the plate explicit, but ignore edge
effects because L 	 a)

T µν = Ec

a
diag(1,−1,−1, 3)θ

(
ζ − ζ0 +

a

2

)
θ

(a

2
− ζ + ζ0

)
× θ(η + L/2)θ(L/2 − η)θ(χ + L/2)θ(L/2 − χ). (30)

Thus the nonzero components of ∂µT µν are

∂µT µζ = 3Ec

a
[δ(ζ − ζ0 + a/2) − δ(ζ − ζ0 − a/2)] θ . . . , (31a)

δµT µη = −Ec

a
[δ(η + L/2) − δ(η − L/2)] θ . . . , (31b)

δµT µχ = −Ec

a
[δ(χ + L/2) − δ(χ − L/2)] θ . . . , (31c)

where θ . . . refer to the remaining step functions. Therefore, the change in the energy obtained
from �W is

�Eg = 6Ec

a

∫
dη dχ [ξζ (ζ0 − a/2, η, χ) − ξζ (ζ0 + a/2, η, χ)]

− 2Ec

a

∫
dζ dχ [ξη(ζ,−L/2, χ) − ξη(ζ, L/2, χ)]

− 2Ec

a

∫
dζ dη[ξχ (ζ, η,−L/2) − ξχ (ζ, η, L/2)]. (32)

2.6. Fermi coordinates

Since we have demonstrated that the gravitational force on a Casimir apparatus is not a gauge-
invariant concept, we must ask if there is any way to extract a physically meaningful result.
There seem to be two possible ways to proceed. Either we add another interaction, say a fluid
exerting a pressure on the plates, resulting in a total stress tensor that is conserved, or we find
a physical basis for believing that one coordinate system is more realistic than another. The

6
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former procedure is undoubtedly more physical, but will yield model dependent results. The
latter apparently has a natural solution.

A Fermi coordinate system is the general relativistic generalization of an inertial
coordinate frame. Such a system has been given by Marzlin [17] for a resting observer
in the field of a static mass distribution. It is actually a priori obvious that in such a system
gij is quadratic in the distance from the observer. Thus the ‘constant field metric’ is simply
the Fermi coordinate metric for a gravitating body,

ds2 = −(1 + 2gz) dt2 + dr′2. (33)

Thus, coordinate lengths do not depend on z. The metric (13) is indeed appropriate, and
the corresponding gravitational force is therefore given by the result found in that case,
F/A = −gEc, as in (16).

2.7. Gauge transformation

Now we can use the method described in (32) to transform the energy in isotropic coordinates
to that in Fermi coordinates. We compute the additional gravitational energy in terms
of the gauge field ξµ, which carries us from isotropic coordinates to Fermi coordinates,
hF

µν = hI
µν + ∂µξν + ∂νξµ. Here from (26) and (33)

hI
00 = −gz, hI

ij = −gzδij , hF
00 = −gz, hF

ij = 0. (34)

The gauge field turns out to be

ξζ = 1
2g

(
1
2ζ 2 cos α + ζη sin α

)
+ f (η, χ), (35a)

ξη = 1
2g

(
ζη cos α + 1

2η2 sin α
)

+ g(ζ, χ), (35b)

ξχ = 1
2g

(
ζ cos α + η sin α

)
χ + h(ζ, η), (35c)

where the functions f, g and h are irrelevant. Substituting this into the expression for �Eg ,
(32), we obtain

�Eg = 6Ec

a

∫ L/2

−L/2
dη

∫ L/2

−L/2
dχ

1

4
g cos α (−2ζ0a) − 2Ec

a

∫ ζ0+a/2

ζ0−a/2
dζ

∫ L/2

−L/2
dχ

1

2
g cos α(−L)ζ

− 2Ec

a

∫ ζ0+a/2

ζ0−a/2
dζ

∫ L/2

−L/2
dη

1

2
g(ζ cos α + η sin α)(−L)

= −AgEcζ0 cos α = −AgEcz0, (36)

which when differentiated with respect to z0 gives an additional force, − δ�Eg

Aδz0
= �F

A
= gEc.

When this is added to the isotropic force (27), we obtain the Fermi force,

F I + �F

A
= −2gEc + gEc = −gEc = FF

A
, (37)

as given in (16). This answer is the second one given in Calloni et al [13], but is not referred
to in the 2006 Bimonte et al paper [14]. Those authors have now modified their analysis and
agree with ours [18].

3. Rindler coordinates

We now turn to the consideration of the Casimir apparatus undergoing uniform acceleration
[19]. Relativistically, uniform acceleration is described by hyperbolic motion,

t = ξ sinh τ, z = ξ cosh τ, (38)

7
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where ξ−1 is the proper acceleration, which corresponds to the metric

dt2 − dz2 = ξ 2dτ 2 − dξ 2. (39)

The d’Alembertian operator takes on cylindrical form,

−
(

∂

∂t

)2

+

(
∂

∂z

)2

= − 1

ξ 2

(
∂

∂τ

)2

+
1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

)
. (40)

3.1. Single accelerated plate

For a single semitransparent plate at ξ1, Green’s function can be written as

G(x, x ′) =
∫

dω

2π

d2k⊥
(2π)2

e−iω(τ−τ ′) eik⊥·(r−r′)⊥g(ξ, ξ ′), (41)

where the reduced Green’s function satisfies (k = |k⊥|)[
−ω2

ξ 2
+

1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

)
+ k2 + µδ(ξ − ξ1)

]
g = 1

ξ
δ(ξ − ξ ′), (42)

which we recognize as just the semitransparent cylinder problem with m → ζ = −iω and
κ → k. Thus, Green’s function for a single plate is

g(ξ, ξ ′) = Iζ (kξ<)Kζ (kξ>) − µξ1K
2
ζ (kξ1)Iζ (kξ)Iζ (kξ ′)

1 + µξ1Iζ (kξ1)Kζ (kξ1)
, ξ, ξ ′ < ξ1, (43a)

= Iζ (kξ<)Kζ (kξ>) − µξ1I
2
ζ (kξ1)Kζ (kξ)Kζ (kξ ′)

1 + µξ1Iζ (kξ1)Kζ (kξ1)
, ξ, ξ ′ > ξ1, (43b)

where the strong coupling limit, µ → ∞, corresponds to Dirichlet boundary conditions.

3.2. Minkowski-space limit

If we use the uniform asymptotic expansion (UAE), based on the limit

ξ → ∞, ξ1 → ∞, ξ − ξ1 finite , ζ = ζ̂ ξ1 → ∞, ζ̂ finite, (44)

we recover Green’s function for a single plate in Minkowski space,

ξ1g(ξ, ξ ′) → e−κ|ξ−ξ ′ |

2κ
− µ

2κ

e−κ(|ξ−ξ1|+|ξ ′−ξ1|)

µ + 2κ
, (45)

where κ =
√

k2 + ζ 2, ω = iζ .

3.3. Energy–momentum tensor

The canonical energy–momentum for a scalar field is given by Tµν = ∂µφ∂νφ + gµν
1√−g

L,
where the Lagrange density includes the δ-function potential. Using the equations of motion
the energy density is

T00 = 1

2

(
∂φ

∂τ

)2

− 1

2
φ

∂2

∂τ 2
φ +

ξ

2

∂

∂ξ

(
φξ

∂

∂ξ
φ

)
+

ξ 2

2
∇⊥ · (φ∇⊥φ). (46)

The force density is given by

fλ = − 1√−g
∂ν(

√−gT ν
λ) +

1

2
T µν∂λgµν (47)

8
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or

fξ = −1

ξ
∂ξ (ξT ξξ ) − ξT 00. (48)

When we integrate over all space to get the (‘coordinate’) force (per area), the first term is a
surface term which does not contribute:

F =
∫

dξ ξfξ = −
∫

dξ

ξ 2
T00, (49)

which when multiplied by the gravitational acceleration g is the gravitational force/area on
the Casimir energy. Using expression (46) for the energy density and rescaling ζ = ζ̂ ξ , we
see that the gravitational force is merely

F =
∫

dξ ξ

∫
dζ̂ d2k

(2π)3
ζ̂ 2g(ξ, ξ). (50)

This result is an immediate consequence of the general formula

Ec = − 1

2i

∫
(dr)

∫
dω

2π
2ω2G(r, r), (51)

in terms of the frequency transform of Green’s function,

G(x, x ′) =
∫ ∞

−∞

dω

2π
e−iω(t−t ′)G(r, r′). (52)

3.4. Force on single plate

Alternatively, we can start from the following formula for the force density for a single
semitransparent plate,

fξ = 1
2φ2∂ξµδ(ξ − ξ1), (53)

or, in terms of Green’s function,

F = −µ
1

2

∫
dζ d2k

(2π)3
∂ξ1 [ξ1g(ξ1, ξ1)]. (54)

For example, the force on a single plate is given by

F = −∂ξ1

1

2

∫
dζ d2k

(2π)2
ln[1 + µξ1Iζ (kξ1)Kζ (kξ1)]. (55)

Expanding this about some arbitrary point ξ0, with ζ = ζ̂ ξ0, and using the UAE, we get (a is
an arbitrary scale to make y dimensionless)

F = − 1

96π2a3

∫ ∞

0

dy y2

1 + y/µa
, (56)

which is just the negative of the (divergent) quantum vacuum energy of a single plate.

3.5. Two accelerated plates

For two plates at ξ1, ξ2, for ξ, ξ ′ < ξ1,

g(ξ, ξ ′) = I<K> − µ1ξ1K
2
1 + µ2ξ2K

2
2 − µ1µ2ξ1ξ2K1K2(K2I1 − K1I2)

�
II′, (57)

where

� = (1 + µ1ξ1K1I1)(1 + µ2ξ2K2I2) − µ1µ2ξ1ξ2I
2
1 K2

2 , (58)
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and where we have used the abbreviations Ia = Iζ (kξa), I = Iζ (kξ), I′ = Iζ (kξ ′), etc. For
ξ, ξ ′ > ξ2,

g(ξ, ξ ′) = I<K> − µ1ξ1I
2
1 + µ2ξ2I

2
2 + µ1µ2ξ1ξ2I1I2(I2K1 − I1K2)

�
KK′, (59)

and for ξ1, ξ2, for ξ1 < ξ, ξ ′ < ξ2,

g(ξ, ξ ′) = I<K> − µ2ξ2K
2
2 (1 + µ1ξ1K1I1)

�
II′

− µ1ξ1I
2
1 (1 + µ2ξ2K2I2)

�
KK′ +

µ1µ2ξ1ξ2I
2
1 K2

2

�
(IK′ + KI′). (60)

In the ξ0 → ∞ limit, the UAE gives, for ξ1 < ξ, ξ ′ < ξ2 (a = ξ2 − ξ1),

ξ0g(ξ, ξ ′) → 1

2κ
e−κ|ξ−ξ ′ | +

1

2κ�̃

[
µ1µ2

4κ2
2 cosh κ(ξ − ξ ′)

− µ1

2κ

(
1 +

µ2

2κ

)
e−κ(ξ+ξ ′−2ξ2) − µ2

2κ

(
1 +

µ1

2κ

)
eκ(ξ+ξ ′−2ξ1)

]
, (61)

with

�̃ =
(

1 +
µ1

2κ

) (
1 +

µ2

2κ

)
e2κa − µ1µ2

4κ2
, (62)

which is exactly the expected result. The same holds in the other two regions.

3.6. Force on two-plate system

In general, we have two alternative forms for the force on the two-plate system:

F = −(
∂ξ1 + ∂ξ2

)1

2

∫
dζ d2k

(2π)3
ln �, (63)

which is equivalent to

F =
∫

dξ

∫
dζd2k

(2π)3
ζ̂ 2g(ξ, ξ). (64)

From either of these two methods, we find the gravitational force on the Casimir energy to be
in the ξ → ∞ limit

F = − 1

4π2

∫ ∞

0
dκκ2 ln �0, �0 = e−2κa�̃. (65)

Explicitly,

F = 1

96π2a3

∫ ∞

0
dy y3

1 + 1
y+µ1a

+ 1
y+µ2a(

y

µ1a
+ 1

)(
y

µ2a
+ 1

)
ey − 1

− 1

96π2a3

∫ ∞

0
dy y2

[
1

y

µ1a
+ 1

+
1

y

µ2a
+ 1

]
= −(Ec + Ed1 + Ed2), (66)

which is just the negative of the Casimir energy of the two semitransparent plates. The
divergent terms are just the sum of the Casimir energies of each plate separately, (56), which
serve to simply renormalize the mass/area of each plate,

Etotal = m1 + m2 + Ed1 + Ed2 + Ec = M1 + M2 + Ec, (67)

and thus the gravitational force on the entire apparatus obeys the equivalence principle

10
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gF = −g(M1 + M2 + Ec). (68)

Saharian et al [20] earlier reached a similar conclusion, but only for the finite part of the
energy.

4. Conclusions

• We have found an extremely simple answer to how Casimir energy gravitates: just like
any other form of energy,

F

A
= −gEc. (69)

This result is independent of the orientation of the Casimir apparatus relative to the
gravitational field. This refutes the claim sometimes attributed to Feynman that virtual
photons do not gravitate.

• Although gravitational energies have a certain ill-defined character, being gauge-
or coordinate-variant, this result is obtained for a Fermi observer, the relativistic
generalization of an inertial observer.

• This conclusion is supported by an explicit calculation in Rindler coordinates, describing
a uniformly accelerated observer. This demonstrates, quite generally, that the total
Casimir energy, including the divergent parts, which renormalize the masses of the plates,
possesses the gravitational mass demanded by the equivalence principle.

• New developments of this work are in progress, and will be described in part in the
contribution to these proceedings by K V Shajesh.
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